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This review shows the equal or greater importance of leaded gasoline-contaminated dust
compared to lead-based paint to the child lead problem, and that soil lead, resulting from leaded
gasoline and pulverized lead-based paint, is at least or more important than lead-based paint (intact
and not pulverized) as a pathway of human lead exposure. Because lead-based paint is a high-dose
source, the biologically relevant dosage is similar to lead in soil. Both lead-based paint and soil lead
are associated with severe lead poisoning. Leaded gasoline and lead in food, but not lead-based
paint, are strongly associated with population blood lead levels in both young children and adults.
Soil lead and house dust, but not lead-based paint, are associated with population blood lead levels
in children. Most soil lead and house dust are associated with leaded gasoline. Lead-based paint
dust is associated with cases of renovation of either exterior or interior environments in which the
paint was pulverized. Based upon the limited data to date, abatement of soil lead is more effective
than abatement of lead-based paint in reducing blood lead levels of young children. About equal
numbers of children under 7 years of age are exposed to soil lead and lead-based paint.
Seasonality studies point to soil lead as the main source of population blood lead levels. Soil lead is
a greater risk factor than lead-based paint to children engaged in hand-to-mouth and pica behavior.
In summary, soil lead is important for addressing the population of children at risk of lead
poisoning. When soil lead is acknowledged by regulators and the public health community as an

important pathway of human lead exposure, then more effective opportunities for improving
primary lead prevention can become a reality. Environ Health Perspect 106(Suppl 1):217-229
(1998). http.//ehpnetl.niehs.nih.gov/docs/1998/Suppl-1/21 7-229mielke/abstract.html
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Introduction
Despite an impressive research effort over exposure (principally leaded gasoline,
the last three decades, recognition that lead industrial point sources, and lead-based
in soil is an important pathway of human paint), the movement of lead in the envi-
lead exposure remains controversial. Some ronment (from air to soil to dust to a
argue that lead-based paint is the most child's hand to a child's mouth), and the
important source of lead exposure. Others effects of lead on human health. Clearly,
argue that the evidence is insufficient to there are many factors that influence the
treat soil and paint as equally important intensity of exposure experienced by an
pathways of human exposure. Hundreds of individual, including age, sex, season, hand-
studies have investigated the sources of lead to-mouth behavior (pica), occupation, race,
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socioeconomic status, diet, and cultural
practices. Some of these factors will be
weighed but only as they relate to the role
of lead in soil as a contributor to the child
lead problem. This review shows the greater
importance of leaded gasoline compared to
lead-based paint as a source of exposure,
and that soil lead resulting from leaded
gasoline, pulverized lead-based paint, and
other sources is equally or more important
than lead-based paint (intact or not pulver-
ized) as a pathway of human lead exposure.
When the role of leaded gasoline and lead-
contaminated soil and dust are acknowl-
edged as an important pathway of human
lead exposure, more effective opportunities
for improving primary lead prevention can
become a reality.

Human beings no longer live in a natural
setting. All around us are the artifacts of
human existence. Our built environment,
particularly the design of the modern
industrial city, is a prime example of the
synthetic character of our environment. To
understand the flow of energy and materi-
als within the built environment and its
consequences for human existence, it is
necessary to understand the geochemistry
and the toxicity of trace metals in the envi-
ronment at both a planetary and regional
perspective (1). Nriagu and Pacyna (2)
have argued that from a global perspective
the toxicity of trace metals released into the
environment exceeds that of all other
radioactive and organic pollutants com-
bined. Lead is a trace metal that has been
associated with human civilization since
the earliest practice of metallurgy. In the
course of mining and concentrating the
ore, smelting the ore to purify the metal,
and manufacturing useful products from
lead, there has been a geochemical transfer
of lead from the mine to human habitats.

Two products have added massive
quantities of lead to the built environment
in modern times. These are lead-based
paint and lead additives to gasoline. From
a gross-tonnage perspective in the United
States, about equal amounts of lead were
used in white-lead paint pigment between
1884 and 1989 as in leaded gasoline
between 1929 and 1989 (3,4) (Figure 1).
The peak use of lead-based paint occurred
in the 1920s when the U.S. economy was
agrarian, rural, and relied mainly on rail
transportation for moving goods and pro-
viding services. The lead-based paints were
used as a protective coating on buildings
and structures in both large and small
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Figure 1. Lead used in gasoline and white lead paint
pigments (3,4).

communities throughout the country. Most
lead-based paint still exists as a thin mass on
walls and structures. In contrast, the peak
use of leaded gasoline occurred in the early
1970s at a time when the U.S. economy
was industrial, urban, and relied on auto-
mobiles for transportation. About 75% of
the gasoline lead was emitted from automo-
bile exhaust pipes in the form of a fine lead
dust (the remaining 25% of the lead ended
up in the oil or was trapped on internal sur-
faces of the engine and exhaust system) (5).
It is estimated that the use of leaded gaso-
line left a residue of 4 to 5 million metric
tons in the environment (6,7).

The global distribution of lead used in
gasoline was not even. Over 10 million met-
ric tons of lead was transferred to the global
environment via the motor vehicle fleet;
about 5.9 million metric tons were dispersed
into the United States alone (8). On a local
scale, the flow of lead additives in gasoline
into the built environment has also resulted
in an uneven dispersal of lead. The modern
industrial city has two features that con-
tribute to the urban pattern of lead. First,
the modern city contains a central business
district, which is the daytime address for a
large number of workers who commute on
a daily basis from outlying areas. Second,
the modern city has a ground transporta-
tion system dominated by privately owned
automobiles and a highway network that
concentrates traffic flows within the central
business district. Add leaded gasoline to
this picture and the result is a system for
the inadvertent delivery and accumulation
of lead in the densely populated areas
surrounding the city center (1).

Soil studies conducted in Maryland,
Minnesota, Louisiana, and elsewhere show a
consistent pattern of lead geochemistry in
urban environments based upon city size and
community location (9-14). Specifically,
large cities have median lead concentrations

1 or 2 orders of magnitude higher than those
of small cities. The distance-soil concen-
tration function from city center to sub-
urbs/rural areas is curvilinear. For example,
in Baltimore, Maryland (9), the highest gar-
den soil contamination was so tightly clus-
tered toward the city center that the
probability that the concentration could be
due to chance was 1 in 1023. Median soil
lead concentrations in the Twin Cities
(Minneapolis and St. Paul, Minnesota) (11)
were 10 times higher than those in adjacent
suburbs with older housing where lead-
based paint concentrations were higher.
Similar results were found when comparing
New Orleans, Louisiana with smaller towns
(13). Mielke et al. (15) calculated estimates
based on average daily vehicle traffic
(ADVT) within 1-mile diameter areas
within city cores. When the annual metric
tons of lead emitted by New Orleans traffic
(ADVT = 95,000) was compared to that for
Thibodaux, Louisiana (ADVT = 10,000),
New Orleans was found to be more than
10 times higher (5.15 metric tons) than
Thibodaux (0.45 metric tons). Median soil
lead concentrations were 300 to 1200 pg/g
in the high-traffic areas of New Orleans
versus 60 pg/g in the high-traffic areas of
Thibodaux. In summary, the cultural use
of metals has changed the pattern of plane-
tary geochemistry, and the main locations
of accumulation are in the built environ-
ment. There now exist "urban metal
islands" analogous to "urban heat islands"
meteorologists use to describe the modern
industrial city (14). The geochemical real-
ity of the urban environment results in
enormous health and policy implications
for society.

Within the U.S. built environment, over
12 million children are exposed to the risk
of adverse health effects from 10 million
metric tons (1019 jig) of lead residues result-
ing from gasoline and paint use (6,16). The
total tolerable daily intake of lead for chil-
dren is about 6 pg lead per day. We measure
lead in micrograms of lead per deciliter of
whole blood (pg/dl). The mass of lead in
our built environment potentially available
for exposure to children is about 19 orders
of magnitude greater than the quantity of
lead relevant to a child. Clearly, there is an
almost inconceivable amount of lead poten-
tially available to children. The critical con-
cern, then, is the amount of lead actually
available to the child.

For most urban areas, the child lead
problem is a function of previous paint and
gasoline use and their accumulation into
the soil pathway of exposure (17). The

immediate societal issue is prevention of
exposure to those who are being exces-
sively overexposed and maintaining the
health status of those who are not. It is
important for those who have power and
influence over implementing lead preven-
tion activities to understand the enormity
of the soil lead contribution to the child
lead problem. Many have claimed that lead
in soil is nothing like the contribution of
lead from paint. The Department of
Housing and Urban Development (HUD),
for example, minimizes the regulatory
requirements for lead in soil compared to
lead in paint in their rules recently pro-
posed in the federal register (18). This is
occurring despite the fact that HUD and
other federal agencies (16,19-21) have
concluded that lead in soil is an important
source of lead. The Agency for Toxic
Substances and Disease Registry (ATSDR)
(19) specifically stated that lead in paint
and dust/soil lead were the two major
sources of lead. The Centers for Disease
Control and Prevention (CDC) (20) states
that "lead-based paint and lead-contami-
nated dusts and soil remain the primary
sources..." HUD (21) states that "for
infants and young children...surface dust
and soil are important pathways..." The
U.S. Environmental Protection Agency
(U.S. EPA) (16) states that "the three
major sources of elevated blood lead are
lead-based paint, urban soil and dust...
and lead in drinking water." In addition to
these statements by government agencies,
there are more than 20 other government
reports that recognize soil/dust lead as a
major contributor to lead in children (22).

An understanding of the relative risk of
lead sources is important because Title X
(the Residential Lead-Based Paint Hazard
Reduction Act of 1992) focuses on lead
hazards, not on the mere presence of lead-
based paint, and hazard is defined to
include lead in soil. Community- and site-
specific responses to environmental lead
must consider soil and dust to address the
problem effectively (23). It is clear that soil
is not being considered an equal threat to
children. For example, only 9 of the 26
member countries of the Organization for
Economic Cooperation and Development
regulate lead in soil in contrast to 17 for
lead in paint (24). Hence, to effectively
integrate soil lead exposures in activities to
reduce lead risk, it is necessary to contrast
and compare lead in soil with the source
commonly believed, perhaps mistakenly, to
be the most important contributor to the
child lead problem, i.e., lead-based paint.
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The Relative Risks of Lead-
Based Paint and Lead
in Soil and Dust
Whenever one addresses the issue of lead in
soil, the first statement one hears is that
lead-based paint is the number one prob-
lem and any or all other lead sources must
be a distant second. The implication is that
lead in gasoline or its pathways of soil and
house dust are trivial in comparison to
direct exposure to lead-based paint itself.
When reviewing the evidence, national
studies usually frame the argument as fol-
lows: "Lead-based paint is the most con-
centrated source of lead to children and,
historically, is the source most closely
linked to lead poisoning in children" (25).
"Lead-based paint is the largest source of
high-dose lead exposure for children" (6).
And "lead-based paint is widely regarded as
the source of the most intensive and dam-
aging exposures to lead and the preeminent
cause of childhood lead poisoning in the
United States" (26). The contention that
lead-based paint is the number one prob-
lem uses the following reasoning: it is a
high-dose source; it is closely linked to lead
poisoning; and the principle source of lead
in house dust and soil is lead paint. Let us
examine these reasons as well as the
additional risk assessment factors for lead
in paint.

Does a High-Dose Source Mean
Greater Risk?
Many argue that lead-based paint is the
number one source of lead in children
because it is a high-dose source. If a mea-
surable amount of lead is a criterion used
to determine delivered dose, then lead-acid
batteries should be a larger hazard than
lead-based paint. Is measurable lead the
only factor considered when determining
the level of risk of a hazardous material?
Obviously, the issue is not just measurable
lead but the accessibility and bioavailabil-
ity of the lead. For example, lead-acid bat-
teries are encapsulated and generally out of
harm's way for children. Lead-based paint
presents another type of problem. Imagine
this scenario: a 2-year-old child eats a 1-g
paint chip containing 2% or 20,000 pg of
lead. The blood volume of that child is
100 dl. At 50% absorption, the child
would have a blood lead (PbB) level of
100 pg/dl. Lead can kill at PbB levels of
100 pg Pb/dl or less. Why, then, are not
young children dying in large numbers?
The answer has to do with the bioavail-
ability of lead, i.e., the likelihood of the
child ingesting a sufficient dose of lead,

and the ability of the intestinal tract to
absorb and retain lead.

Several key factors are at issue besides
the total lead available from the source. It
is known that about 50% of ingested
dietary lead is absorbed by children less
than 5 years of age (27). Experiments on
lead in soil and paint show that 2 to 6
times as much lead can be biologically
extracted from soil than from paint (28).
Most studies use 30%, i.e., 3 times more
lead is bioavailable from lead in soil than
in paint (29,30). Moreover, human
absorption and retention of lead is a func-
tion of both particle size and chemical
species (31). The smaller the particle, the
more easily it is absorbed by the digestive
system. Nearly half the exhaust emitted
from gasoline was less than 0.25 pm in
size, with most of the remaining emissions
between 10 and 20 pm (5). In contrast,
the particle size of lead in paint dust/chips
ranges from 200 to 300 pm to the visible
range. Hence, large particles containing
lead such as paint chips are less easily
absorbed and, therefore, less bioavailable.
It is well known that paint chips pass
through the digestive system intact. This
helps explain why a single lead paint chip
does not kill a child.

Also, bioavailability is not simply a
function of particle size. Research has shown
that much lead is reabsorbed by food or
other substances already in the digestive sys-
tem, thereby limiting the availability of
lead to membrane absorption sites. A child
absorbs less lead just after eating than dur-
ing the period between meals (31).
Further, the capability of the digestive
system to absorb lead is limited. Con-
sequently, although the first increment of
lead is absorbed, subsequent increments are
less likely to be absorbed until some point
when the receptor sites are saturated.
Research shows that after a dose exceeds
500 pg (even of small particles) there is a
dramatic flattening of the absorption capa-
bility of lead in food, soil, dust, drinking
water, and paint (17,32,33). As the dose
increases beyond 500 pg, the incremental
effect of more lead decreases until it has
zero effect upon absorption. Hence, it is
the first incremental amount of lead
(100-500 pg), not the total lead ingested,
that poses the largest risk of lead absorption
to young children.

For the above reasons, extremely high
concentrations of lead in a paint chip do
not translate into a linear increase in PbB
levels. The fact that the amount of lead in
a paint chip measures higher than the

amount of lead in soil is biologically irrele-
vant. Measurable lead does not equate
with either the effective dose or the hazard
that lead imposes. Potential dose does not
equal hazard.

Is Lead-Based Paint the Primary Cause
ofLead Poisoning?
Central to the argument that paint is the
number one lead source is that lead-based
paint is closely linked with lead poison-
ing. Here again, this evidence must be
critically evaluated.

Nature &, Extent Report to Congress.
In response to the 1986 Superfund reautho-
rization legislation, the ATSDR examined
area-stratified lead exposure among U.S.
preschool children (19). "This examination
consisted of.. .both enumeration.. .and
estimation methodologies...to yield preva-
lences of preselected blood lead criterion lev-
els and those children whose environmental
setting would be expected to provide a sig-
nificantly elevated risk of systemic exposure
despite the absence of specific blood lead
prevalence data." The report estimated the
number of black and white children with
PbB levels above selected criterion values,
actual counts of children identified through
U.S. screening programs for 1984, and the
number of children in 318 SMSAs
(Standard Metropolitan Statistical Areas)
who have the highest potential exposure to
lead paint (34).

The premise of the ATSDR report was
that "...since the age of housing indicates
the degree of exposure to lead in paint and
plumbing, we analyzed the distribution of
children living in SMSAs by the age of
their housing units" (34). The report
concluded that

...the counts...in terms of housing age
and family income produced the unex-
pected finding that more children in older
housing (high lead paint and plumbing
lead levels) were also in noncentral city,
nonpoverty families than were children
associated in typical risk groups. This
observation is consistent with the strati-
fied distributions of the report's projected
numbers of the nation's children with
elevated PbB levels. (34)

The report goes on to conclude that

estimates of exposure and toxicity based
on data gathered in isolated points of
time, such as the estimates and enum-
erations given in the report to Con-
gress, greatly understate the cumulative
risk for a population that is posed by a
uniquely persistent and ubiquitous
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pollutant such as lead. This cumulative
toll over extended time is of much
greater magnitude than the prevelance
or total exposure estimates for a given
year. (34)

The effect of these conclusions dominated
the creation of the 1992 Lead-Based Paint
Hazard Reduction Act with all its subse-
quent mandates and problems.

Are the methodologies and conclusions
of the ATSDR report valid, i.e., is age of
housing a valid surrogate variable for lead
exposure? ATSDR's own data, particularly
in conjunction with National Health and
Nutrition Examination Survey (NHANES)
II and NHANES III data, can answer this
question. Tables 1 and 2 sumnmarize the
extent of the problem as ATSDR found it.
Over half the housing in the U.S. contains
lead-based paint, based on age of housing.
Further, 87% of children under 7 years of
age live in housing with lead-based paint.
In addition, 7.7% of U.S. lead-painted
housing is in unsound or deteriorated con-
dition. Further, 12.8% of U.S. children live
in unsound, lead-painted housing. If one
contrasts these figures with the NHANES
II dataset (Table 3), one sees a close corre-
spondence between the number of children

less than 6 years of age with PbB levels
greater than 10 pg/dl (87.8%) and the
number of children in lead-painted hous-
ing (87%). Further, the number of chil-
dren with PbB levels greater than 25 pg/dl
(14.3%) closely matches the number of
children in unsound, lead-painted houses
(12.8%), who presumably would have
greater exposures to lead. Consequently, at
first glance, the presence and deterioration
of lead-based paint appears to explain
population PbB levels in young children.

ATSDR did not, of course, base their
conclusions on the NHANES II dataset.
Rather, they selected 1984 lead-screening
data, adjusted for NHANES II results, with
census data for 318 SMSAs to determine
prevelance rates for children in lead-painted
houses. Their analysis revealed that 46% of
children under 7 years of age had PbB levels
greater than 10 pg/dl and only 1.5% had
PbB levels greater than 25 pg/dl (Table 3).
From these data they then calculated an
estimate of the percent of children in
unsound, lead-painted houses above
selected PbB levels (Table 2). They calcu-
lated that about half (50.5%) the children
with PbB levels greater than 15 pg/dl lived
in unsound, lead painted houses and that

Table 1. ATSDR best estimate of pre-1980 lead painteda houses and the number of children under 7 years of age
by deterioration criteria in the United States.

Houses, no. Houses, Base population,b Population,
Category 1000 % 1000 %

Total United States 80,390 100.0 13,840 100.0
Lead painted 41,964 52.2 12,043 87.0
Unsound lead painted
Total 6,199 7.7 1,772 12.8
Peeling paint 1,972 567
Broken plaster 1,594 458
Hole(s) in wall 2,602 747

aLead paint levels greater than 0.7 mgPb/cm2. bU.S. white and black populations only. Data from ATSDR, Tables
VI-3 and VI-4 (19).

Table 2. ATSDR best estimate of the percent of children under 7 years of age above selected blood lead levels in
unsound lead-painted housing.

Percentage of children with
Total children, PbB levels (pg/dl) greater than Percentage of

Category 1000 15 20 25 U.S. children

ATSDR base populationa 13,840 17.2 5.2 1.5 100.0
Children in unsound lead-painted housing 1,772 67.8 30.8 10.6 12.8
Childrenb in unsound lead-painted
housing selected PbB levels
> 15 pg/dl 2,380.6 50.5 - - 17.2
> 20 pg/dl 715.5 - 76.2 - 5.2
> 25 pg/dl 200.7 - - 93.7 1.5

Childrenb in unsound lead-painted housing 13,840 8.7 4.0 1.4 100.0
compared to total base population
alU.S. white and black population only. bTranslated from actual numbers into percents. Data from ATSDR, Tables
1-3 and VI-6 (19).

93.7% of the children with PbB levels
greater than 25 pg/dl did so. Based on these
data, they reached the conclusions noted
above, i.e., that their estimates underesti-
mated the risk of lead exposure in young
children. Nothing in their analysis chal-
lenged their premise that living in lead-
painted houses was the dominant risk factor
for young children.

There are a number of indicators that
the ATSDR conclusions require a careful
review in light of NHANES III (35-37).
First, even if we assume that all children
with PbB levels greater than 10 lig/dl lived
in lead-painted houses, over 47% of the
children living in leaded painted houses had
PbB levels below 10 pg/dl (46% > 10
pg/dl x 100 . 87% living in lead-painted
houses = 52.9%; 100- 52.9 = 47.1%). This
is very close to chance and does not indicate
that intact lead-based paint correlates with
population PbB levels. Second, even if we
assume that all children with PbB levels
greater than 25 pg/dl lived in unsound,
lead-painted houses, 88% of the children
living in such houses had PbB levels below
25 jig/dl (1.5% > 25 pg/dlx 100 + 12.8%
living in unsound, lead-painted houses
= 11.7%; 100-11.7 = 88.3%). The ATSDR
data indicate that living in unsound, lead-
painted houses is a necessary condition to
having PbB levels greater than 25 jig/dl.
But with over 88% of children less than 7
years of age living in unsound, lead
painted houses with PbB levels less than
25 pg/dl and nearly half with PbB levels
less than 10 pg/dl, it is not a sufficient
condition. Third, the ATSDR analysis pre-
dicts that the highest PbB levels will occur
in noncentral city areas among the highest
income groups. It was clear in the
NHANES II dataset that the opposite was
true, the highest prevalences were in cen-
tral city areas among the poor. This indi-
cates that perhaps the analysis is skewed
and their premise faulty, i.e., that age of
housing is a good predictor of PbB levels in
the U.S. population. Fourth, contrary to
the ATSDR conclusion that they may have
underestimated the risk to the U.S. popu-
lation, the NHANES III data dearly show
a massive decrease in PbB levels within the
U.S. population (Table 3). The NHANES
III dataset continues to show the highest
PbB levels in larger cities among people of
color and the poor. Further, the steep
decline in PbB levels took place in the
absence of any significant effort to abate
unsound, lead-painted houses (38).
Consequently, the primary source of infor-
mation used by Congress to derive lead
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Table 3. Distribution of blood lead levels above selected values for children 6 months to 6 years of age in the
United States.

Percentage of children with
Mean PbB levels, PbB levels (pg/dl) greater than

Surveya Reference Mid-year pg/dl 10 15 25

NHANES II (16) 1978 15.6 87.8 56.2 14.3
ATSDR (19) 1984 7.9 46.0b 17.2 1.5
NHANES Ill
Phase 1 (36) 1990 3.6 8.9 2.7 0.5
Phase 2 (37) 1993 2.7 4.4 1.3 <0.4c

&Differences between values in text and tables reflect different numbers used by different sources. bOata from
Crocetti et al. (34). CPbB >25 pg/dl not provided; PbB >20 pg/dl=0.4%.

abatement policy had overstated conclu-
sions and was based on a faulty premise
that the presence of lead paint or its deteri-
oration, as measured by age of housing, is
the best predictor of population PbB levels.

The Presence of Lead Paint in
Poisoning Cases. In data published or made
available by the CDC, a U.S. EPA analysis
found in 5 fiscal years between 1974 and
1981 that, out of 125,060 children with
blood lead levels of30 or 40 pg/dl "in 40-50
percent of confirmed cases of elevated blood
lead levels, a possible source of lead paint
hazard was not located..." (5). Further, just
because a lead paint source was located
about half the time does not mean, ipso
facto, that lead-based paint was the source
of the child's lead. In cases of elevated PbB
levels, the relative contribution from various
sources cannot be determined with cer-
tainty-whether it be lead paint, leaded
gasoline, industrial emissions, or diet-
without conducting isotopic analyses and
even this approach has limited utility (39).
If lead-based paint were present only about
half the time in the U.S. EPA analysis of
125,060 cases, then lead-based paint is the
number one potentially contributing source
to elevated PbB levels by a relatively slim
margin. There is no question, however, that
when paint is pulverized into a lead dust
during renovation, or inadequately abated,
or a child has pica for paint chips, severe
lead poisoning in young children is bound
to result.

Lead Poisoning from Smelter
Emissions. It is important to recognize
that lead in dust and soil can cause high
PbB levels in the complete absence of lead-
based paint. Studies of smelter communi-
ties have revealed that soil and dust alone
can cause epidemics of lead poisoning. For
example, Yankel et al. (40) found that
99% of children, 1 to 9 years of age, who
were living less than 1 mile from the
smelter, had PbB levels greater than 40
pg/dl. Mean soil lead concentrations were
7500 pg/g. At 2.5 miles from the smelter,

mean soil lead concentrations had declined
to 1400 pg/g-an amount comparable to
inner-city areas in the U.S. (13). At this
distance, 28% of the children had PbB lev-
els greater than 40 pg/dl. Similarly, studies
in neighborhoods near the El Paso, Texas,
smelter found 53% of the children living
closest to the smelter had PbB levels greater
than 40 pg/dl where mean soil lead levels
were about 1800 pg/g (41). It is important
to note that the route of exposure in
smelter studies is believed to be hand-
to-mouth activity. Studies in Omaha,
Nebraska (32), and in Belgium (42)
showed that after air lead emissions were
substantially reduced, children living in
soil-dust areas containing high lead and
who were closest to the lead industries
experienced little, if any, decline in mean
PbB levels. This indicates that the over-
whelming PbB contribution was from lead
dust via hand-to-mouth activity, demon-
strating that soil and house dust can cause
epidemics of lead poisoning. In contrast to
these lead industry studies showing 50 to
more than 90% of young children with
PbB levels greater than 40 pg/dl, the
Chicago Lead Clinic in its worst year
(1969) found that only 8% of children had
PbB levels greater than 50 pg/dl (with an
average of 3.2% having levels greater than
50 pg/dl out of hundreds of thousands of
children screened for the years 1967-1971)
(43). These studies suggest that lead dust
can be a major source of the lead contribut-
ing to population PbB levels in inner cities
and are similar to those in smelter com-
munities, albeit from a different source.
The data also imply indirectly that the link
between lead paint and population PbB
levels is not absolute.

Population PbB Levels Decrease with
Gasoline Lead Reduction. Another line of
evidence that raises questions about the
hypothesized link between paint and popu-
lation PbB levels is the change in the distri-
bution of population PbB levels as the lead
content of gasoline was reduced. Data from

the NHANES II (5,19,44-46) and
NHANES III (36,37) studies show a sig-
nificant reduction in mean population PbB
levels for very young children (1-5 years of
age), from 15.8 pg/dl in 1976, to 7.9 jig/dl
in 1984, to 4.4 pg/dl in 1994. Data from
the NHANES III Phase One study show a
major and overwhelming reduction in
mean population PbB levels in young chil-
dren: 77% for white children and 72% for
black children compared to the NHANES
II Study (36). These studies indicated that
the change in mean PbB was due to the
decline in the lead content of gasoline
(5,36,45,46) and a decrease in the lead con-
tent of foodstuffs and lead solder in canned
food (47). The overwhelming source clearly
was leaded gasoline (5,36,45). Further,
analyses have been conducted of the
changes in air lead concentrations during
this time frame (5) and the dose-response
relationship between air lead concentrations
and PbB levels as a function of both direct
inhalation and indirect ingestion of lead
dust (19). A review of this evidence
strongly supports the condusion that it was
the decline in the availability of fresh lead
dust, via ingestion of lead-contaminated
soil and house dust that resulted in the
steep decline in population PbB levels in
young children during this period (48).

During the NHANES II and III time
frames (1976-1984 and 1988-1994),
there was also a significant decline in the
extreme upper range of the distribution.
The distribution of PbB levels in the U.S.
population of children less than 6 years of
age was roughly along the lines of a
Gaussian distribution. It is an intrinsic
property of Gaussian distributions that
small changes in the mean imply major
changes in the extremes, i.e., the tails of the
distribution. Indeed, a comparison can be
made between mean population PbB levels
for the mid-year of the NIHANES II study
(15.6 pg/dl in 1978) and the ATSDR
study (7.9 jig/dl in 1984) based on screen-
ing data in 1984 and adjusted for the
NHANES II model. This shift of 7.7 pg/dl
in mean population PbB levels shifted the
distribution of population PbB levels, as
shown in Table 3. In addition, a compari-
son of NHANES II with NHANES III
shows a similar decrease of 12.9 pg/dl in
mean PbB levels of children 1 to 5 years of
age with a decrease from 14.3% to less
than 0.4% in PbB levels greater than 25
pg/dl (36,37). A shift in the population
mean of 7.7 pg/dl from 1978 to 1984
resulted in a decline of nearly half the cases
with PbB levels greater than 10 pg/dl and a

Environmental Health Perspectives * Vol 106, Supplement I * February 1998 221



MIELKE AND REAGAN

reduction by more than 10 times in the
number of cases greater than 25 pg/dl.
Similarly, a mean shift of 12.9 pg/dl from
1978 to 1993 resulted in a decline of 95%
of the PbB levels greater than 10 pg/dl and
a decline of 97.2% of the PbB cases greater
than 25 pg/dl. These data suggest that the
relationship is very strong between leaded
gasoline and population PbB levels.
During the years when lead was being
removed from gasoline, there was little
action to remove lead-based paint from
buildings (38,49).

Soil and Dust Lead Dominate the
Pathway. Multimedia studies suggest that
lead-based paint is not closely linked with
population PbB levels. Many anecdotal
cases of lead poisoning have been attributed
to lead-based paint. Although the number
of individual cases relative to the popula-
tion at risk has never been very high, many
investigators simply assumed that all lead
poisonings and all exposures could be
attributed to lead-based paint. Multimedia
lead studies help to "tease out" the relation-
ship between various exposures and sources
to PbB levels. For example, Menton et al.
(50) found that detailed structural equation
models in a longitudinal study in,'Boston
were consistent in showing that "blood-lead
levels are significantly related to dust-lead
and soil-lead, and the incidence of refinish-
ing activities." Burgoon et al. (51), in a
review of 11 studies found that "...these
results reaffirm the soil-to-dust-to-blood
pathway said to represent the dominant
mechanism of childhood lead exposure."
There are, of course, conditions that allow
paint to overwhelm soil as a pathway, i.e.,
whenever housing is renovated with unsafe
work practices that pulverize paint into a
dust when subsequent cleaning is not con-
ducted or is inadequate for the situation, or
where lead-contaminated soil concentra-
tions are low (52). Yet it must be noted
that lead-contaminated bare soil can poison
children when ingested via geophagia or
hand-to-mouth activity.

Inner-city Children Show Uniformly
Higher PbB Levels. Several studies explain
population-based PbB levels. Sayre et al.
(53), who conducted pioneering work on
the role of lead dust in the exposure of
children to lead, questioned the hypothesis
of paint chip pica for all lead exposures
that prevailed within the medical commu-
nity. The criticism of Sayre et al. was
based on observations of uniform elevation
of lead exposure by inner-city children.
They noted that exposures to lead dust
were the same regardless of the condition

of lead paint and reasoned that if paint
chips were the major source of lead expo-
sure, they should see high PbB levels in a
few children and low levels in those not
ingesting paint chips. Instead, they
observed that elevated PbB levels tended
to persist to 5 years of age, which is diffi-
cult to account for because pica behavior
rarely persists beyond age 3. It is impor-
tant to distinguish between pica and hand-
to-mouth behaviors. Pica behavior is the
deliberate ingestion of nonfood items
including soil (geophagia). Children with
soil pica routinely ingest 5 g of soil per day
with 20 g not uncommon. In contrast,
hand-to-mouth behavior is the inadvertent
ingestion of lead dust (particle size < 50 pm)
adhering to fingers, hands, or objects. The
hand-to-mouth behavior pathway of expo-
sure results in the ingestion of quantities of
dust that rarely exceed 0.20 g per day. The
ubiquitous occurrence of the behavior com-
bined with the physical-chemical char-
acteristics of small dust particles make
hand-to-mouth behavior a potent pathway
of lead exposure. After comparing inner-
city and suburban children hand-dust lead
levels and the environment and noting
large differences based on community loca-
tion relative to city core, they proposed
lead dust as a major lead source in chil-
dren. They did not propose leaded gasoline
as an alternative, but it should be noted
that lead additives in gasoline peaked
between 1970 and 1972 when Sayre et al.
were conducting their field research.

Charney et al. (54) compared two
groups of high-risk, inner-city black chil-
dren: group I had PbB levels greater than
40 pg/dl; group II had PbB levels less than
30 pg/dl. They found that four factors
explained 40 to 91% of the variance
between these two groups. They asserted
that "hand lead level, house dust lead level,
lead in outside soil, and a history of pica all
appear to be multiplicative factors, con-
tributing independently to the very high
proportion of total variance explained"
[p values <0.005, 0.005, 0.04, 0.001,
respectively]. Interior paint was not a
strong independent factor in this study.

The Sachs (43) study and other similar
studies seem to imply that children with
PbB levels greater than 40 pg/dl and who
live in deteriorating housing obtain their
lead only through paint chip pica. In an
effort to see if this was always true,
Hammond et al. (55) examined young
children with PbB levels in the 40 to 70
pg/dl range and who lived in houses with a
lead paint hazard. He expected to find paint

chips in children's stools and fecal lead
spikes indicating intermittent high source
doses. Instead, he found relatively high con-
tinuous exposure to lead evenly mixed
throughout the stool with no paint chips or
high lead fecal spikes. He concluded that
the lead exposure was due to ingestion of
lead dust via hand-to-mouth activity.
Further, it could not be established that
lead paint was the source of the dust (56).
Children moved to low lead dust housing
experienced an immediate drop in fecal
lead concentrations.

Note that, like Sayre et al. (53), some
literature refutes the idea that deteriorating
lead paint is correlated with population PbB
levels. Angle et al. (57) examined the distri-
bution of PbB levels based on the location
of dilapidated housing with lead paint,
high-traffic roads, and industrial point
sources in Omaha. The distribution of PbB
levels matched the locations of point sources
and traffic but not dilapidated housing. This
would appear to indicate that the presence
of flaking, peeling paint is insufficient by
itself to significantly raise PbB levels in a
neighborhood relative to the contribution of
other sources such as leaded gasoline or
industrial/commercial point sources.
Angle's study suggests that although the
presence of deteriorated lead paint may be
evidence of a hazard, it does not necessarily
explain population PbB levels.

Mielke et al. (12) found that the
concentration of Pb in children's blood
varied in the same direction as the concen-
tration of lead in soil but not with the age
of housing (Table 4). A small older com-
munity with low traffic flows (Rochester,
Minnesota) and an older inner-city com-
munity with low traffic flows (North
Minneapolis, Minnesota) had statistically
significant lower concentrations of lead in
blood and soil compared to those in a rela-
tively younger inner-city community with
high traffic flows (South Minneapolis).
The difference in PbB levels can be
explained by soil lead concentrations,
which reflected the historic pattern of traf-
fic density, and, ultimately, the lead used
in gasoline. These results are consistent
with the NHANES II and III studies and
the published literature.

It is important to note that research on
geographic areas larger than a single resi-
dence has demonstrated a consistent central
tendency of soil lead results in given
neighborhoods or communities indicates
the reliability of soil sampling for pur-
poses of comparing geographic areas
larger than a single residence. Median soil
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Table 4. Comparison of selected variables between Rochester, Minnesota, and inner-city South and North
Minneapolis.a

Inner-city Inner-city
Variable Rochester North Minneapolis South Minneapolis

PbB levels, %
> 10 pg/dl 0.0 26.4 46.7
> 15 pg/dl 0.0 7.6 29.3
> 25 pg/dl 0.0 1.4 6.4

Housing built before 1950, % 74.2 67.1 58.8
Soil lead > 150 pg/g, %
Foundation samples 38.9 67.6 93.9
Streetside samples 11.1 53.3 78.2
Yard samples 0.0 62.3 81.9

8Mielke et al. (12)

lead concentrations reflecting a neighbor-
hood, zone, community location, or city size
can be readily compared (58). For example,
teams collecting in the same neighborhoods
by two different research groups in
Minneapolis and St. Paul showed strong
correlations of 0.66 for houseside samples (p
value = 0.00 1) and 0.60 for streetside sam-
ples (p value = 0.01) (59). One neighbor-
hood in Minneapolis was sampled by five
different teams independent of each other,
yet the distributions and measures of central
tendency between groups were similar.

These studies and more like them indi-
cate that PbB levels in the general popula-
tion are closely linked to lead in soil and
house dust and that only some unknown
fraction is directly linked to lead-based
paint. Both the U.S. EPA and the Royal
Society of Canada have concluded that, at a
minimum, 30 to 40% of children's elevated
PbB levels is attributable to lead from gaso-
line (16,60). A comparison of the decline in
children's PbB levels from NHANES II and
NHANES III suggests that 75 to 95% of
cases of children with PbB levels above 9
pg/dl assumed to be attributable to lead
paint were, in fact, from leaded gasoline.

Is Lead-Based Paint the Principle
Source ofLead in Soil
and House Dust?
Some researchers have argued (26) that
lead-based paint contributes lead to both
interior house dust and exterior dust and
soil, but that gasoline contributes lead
only to exterior soil and dust. In other
words, paint is said to be the sole source
of interior house dust lead.

The primary argument in favor of the
idea that lead-based paint is responsible for
increased PbB levels is that very high PbB
levels are often found in children living in
older housing. Most of the lead-based paint
used in the U.S. (92%) was manufactured
prior to 1950 (Figure 1). Therefore, it is

concluded that the lead paint in the older
housing caused the lead poisoning. Another
way to view older housing is as lead traps;
the older the house, the greater the amount
of exterior lead trapped inside (61). Interior
house dust lead concentrations often reflect
exterior soil lead concentrations (33), which
in turn generally reflect the historic use of
lead in gasoline and its increase with traffic
density rather than with the age of housing.
Older housing associated with high PbB lev-
els reflects exterior gasoline-contaminated
soil lead that accumulated in the interior of
the dwelling, when it was tracked in over
time and became available to very young
children through hand-to-mouth activity
(14). In short, variations in the contribu-
tions of sources to house dust appear to be
unrelated to the age of homes (62). The fol-
lowing information supports this idea.

Lead Tonnage Equivalent in Gasoline
and Paint. From a gross tonnage perspec-
tive, approximately equal quantities of lead
were used in leaded gasoline between 1929
and 1989 as were used in white-lead paint
pigments between 1884 and 1989 (3,4)
(Figure 1). All the lead emitted from auto-
mobile exhaust pipes was in the form of a
fine lead dust. In contrast, most lead-based
paint still exists as a thin mass on walls and
structures and is not readily accessible to
children. It is estimated that the use of
leaded gasoline left a residue of 4 to 5 mil-
lion metric tons of lead in the environ-
ment, which poses a risk to sensitive
populations (6,7).

Geographic Pattern of Gasoline Lead
Emissions and Blood Lead. The disper-
sion of lead from the combustion of leaded
gasoline resulted in a distinct geographic
pattern through the various environmental
media (air to soil to house dust to blood
lead). This pattern demonstrates the mas-
sive contribution of leaded gasoline to lead
in the air; subsequent deposition of lead
dust from the air onto soil; the tracking of

lead soil dust into structures to contami-
nate interior house dust; and, most impor-
tantly, subsequent uptake of lead dust from
either or both interior and exterior envi-
ronments by young children through
hand-to-mouth activity. These processes
are discussed below.

AIR. Air lead concentrations were highest
where lead exhaust was greatest. According
to the U.S. EPA (5), air lead levels were
highest in the inner city, lower in the outer
city, lower still in suburban areas, and low-
est in rural areas. A distinct concentration
gradient occurred in air lead concentrations
away from the downtown areas of most
major urban areas. Lead in the air settles to
the ground and contaminates the soil.

SOIL. Numerous researchers have
shown a decreasing pattern of soil lead
concentrations similar to air lead concen-
trations, i.e., highest in the inner city,
lower in the outer city, lower still in subur-
ban areas, and lowest in rural areas (12).
This pattern was clearly demonstrated in
maps showing decreasing soil lead concen-
trations in foundation soils away from the
downtowns of Minneapolis and Saint Paul,
Minnesota (59), and in New Orleans,
Louisiana (15), even though communities
away from the inner city were as old as the
inner-city communities. Foundation soils
reflect the accumulated impact and wash-
down of both air lead dust and exterior
lead-based paint dust.

HOUSE DUST. Numerous studies have
demonstrated that a large portion of interior
house dust lead is due to leaded gasoline.
Fergusson and Kim (61) demonstrated that
house dust lead concentrations increase as a
function of building age, indicating that
structures act as traps for lead dust. They
also found that house dust lead concentra-
tions increase as a function of traffic density,
i.e., decreasing house dust lead concentra-
tion gradients with increasing distances
from areas of high lead traffic similar to geo-
graphic patterns found for air lead and soil
lead concentrations. Bornschein et al. (33)
found that soil lead concentrations and
house dust lead concentrations are closely
correlated [r= 0.57]. Fergusson et al. (63)
found that house dust is at least 50% soil
dust. Research has demonstrated that soil
dust lead enters a structure by being
tracked in (64-66). Chemical composition
studies of house dust have revealed that the
source of lead in house dust is primarily
leaded gasoline. Such studies consists of
apportioning sources of house dust lead
based on the ratio of chemical elements in
the original dust sources (e.g., paint or soil)
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or the likely contribution of lead from
organic and inorganic sources, or gravimet-
ric and microscopic measurement in fine
fractions compared to possible sources.
Sturges and Harrison (67), using gravimet-
ric and microscopic measurement of fine
fractions, reported that 85% of house dust
lead was from leaded gasoline. Fergusson
and Schroeder (68), after examination of
the organic and nonorganic contribution
of sources to house dust, reported that the
source of 95% of house dust lead was
leaded gasoline in newer housing and at
least 50% was from leaded gasoline in
older housing.

BLOOD LEAD. The geographic distri-
bution of PbB levels follows the same pat-
terns as lead in air, soil, and house dust and
changes as a function of the availability of
lead in gasoline. Lead in food, water, and
paint do not exhibit specific geographic pat-
terns. In the case of lead-based paint, old
houses everywhere, old farm houses, small
cities, and inner cities alike contain similar
amounts of lead in paint. The NHANES II
and III studies and the ATSDR study on
1984 lead screening data showed that PbB
levels were highest in the inner city, lower in
the outer city, lower in small communities,
and lowest in rural areas (19,35,37,45).
Numerous reports in the literature support
this pattern (15).

Does Lead Abatement Affect
PbB Levels?
Intervention does improve environmental
conditions and lower PbB levels in exposed
populations. The U.S. EPA (69), in a
review of 16 studies addressing lead abate-
ment effectiveness, found that "...interven-
tion did reduce exposed children's blood
lead concentrations...on the order of
18-34%... .6-12 months following a vari-
ety of intervention strategies." Four studies
that used PbB levels as a biologic marker
concluded:

The Milwaukee Retrospective Educa-
tional Study... (70) results indicate a
13.6% decline 2 to 15 months following
intervention as the effect of their in-
home educational outreach efforts. Dust
control measures, conducted in the
Baltimore Dust Control Study... (54),
were associated with a 16.1% effect 12
months following initiation. Soil abate-
ments, performed in the Boston 3-City
Soil Abatement Study... .(71-72), exhib-
ited an 11.5% effect by 11 months post-
intervention. Finally, the 1990 St. Louis
Paint Abatement Study... (73) also
reported an 11.5% effect on the blood-
lead levels of resident children 10 to 14

months following the abatement of dam-
aged lead-based paint (recall that a multi-
ple linear regression model predicted a
13% effect). Though the data are lim-
ited, these results suggest that these inter-
vention strategies are comparable in their
effect on blood-lead concentrations.

The Boston portion of the U.S. EPA
3-City Soil Abatement Study addressed soil
lead abatement. This study consisted of
three different groups involving children
whose PbB levels were in the 7 to 24 pg/dl
range: the study group that received abate-
ment of soil, house dust, and loose paint;
comparison group A, which received abate-
ment of house dust and loose paint; and
comparison group B, which only received
abatement of loose paint. Only the study
group that included soil abatement had a
statistically significant reduction in PbB
levels (2.44 pg/dl) 11 months post-
abatement (71). In a follow-up study, PbB
levels continued to decline (3.03 pg/dl) in
the study group, indicating a persistent
intervention effect at least over the short
term (2 years) (72). Moreover, soil lead
abatement performed in a subset of com-
parison groups A and B resulted in a reduc-
tion in PbB levels of 41 and 13%,
respectively (69). The combined reduction
in comparison groups A and B was 3.63
pg/dl as a consequence of the subsequent
soil abatement (72). The U.S. EPA analy-
sis of the Boston portion of the 3-City
Study concluded that "blood lead were
reduced by approximately 1.86 pg/dL at
10 mo[nths] after soil lead abatement...
additional reductions in blood lead of
about 2.0 pg/dL (relative to non-abated)
were observed at 22 mo[nths] postabate-
ment.. . "(74). One other soil abatement
study is worth noting. Soil lead abatement
in the smelter town of Rouyn-Noranda
and the community of St-Jean-sur-
Richelier, Quebec, resulted in decreases in
PbB levels of about 30% (3.2 pg/dl) and
50% (5.1 pg/dl), respectively (75).

The U.S. EPA Urban Soil Lead
Demonstration Project (3-City Study)
integrated conclusion was that "when soil
is a significant source of lead in the child's
environment, under certain conditions, the
abatement of that soil will result in a
reduction in exposure that will cause a
reduction in childhood blood lead con-
centrations" (74). The U.S. EPA further
concluded that

in the first year after soil abatement, at
most 40 to 50 percent of a child's existing
blood lead burden may be removed by

soil abatement or any other combination
of abatements and interventions apart
from medical treatment by chelation.
There may be a much greater effect of
lead abatement in preventing lead expo-
sure in future residents.

Additional Risk Information on Lead-
Based Paint and Other Sources!
Pathways. A number of other factors
should be considered in determining
whether lead paint is the principal source of
childhood lead poisoning. These factors
include: the number of children at risk for
lead exposure by lead source; the role of
seasonality in the child lead problem; and
the role of pica in the child lead problem.

First, ATSDR estimated that nearly 12
million children under 7 years of age are at
risk from lead in paint and 12 million chil-
dren are at risk from urban soil and dust
(19). Clearly, since there are only 18 mil-
lion children under age 7 in the United
States, there exists considerable overlap
between the two groups. The U.S. EPA
(16) also concluded that about 12 million
children were exposed to "lead-based paint
+ urban background", i.e., lead in soil.
Hence, both lead in soil and paint pose a
risk, separately or in combination to about
an equal number of children, roughly two-
thirds of all children in the United States
under 7 years of age.

Second, one of the striking features
about the distribution of lead in populations
is that, if PbB levels are monitored tempo-
rally, they change as a function of the seasons
of the year. The NHANES II survey showed
that PbB levels in the summer were about 20
to 30% higher than in the winter (46).
Hunter (76,77) has reported that the preva-
lence of lead poisoning cases (defined as a
PbB level > 40 pg/dl at the time) was 5 to 10
times greater in the summer than the winter.
At first it was thought that these seasonal dif-
ferences were due to the effect of increased
sunlight on 1,25-CC vitamin D metabolism
and its effect on calcium transport.
Subsequent research, however, showed that
the seasonal change in vitamin D metabo-
lism is too small to explain changes in PbB
levels (78).

The accepted explanation for seasonal
differences in PbB levels and the prevalence
of lead poisoning cases are that in the sum-
mer there is a greater risk of geophagia
(pica for soil); increased access and resus-
pension of soil dust lead; increased deposi-
tion of lead in air through open windows;
and most importantly, increased tracking
in of lead-laden dust into dwellings from
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the exterior by people and pets. Both inte-
rior house dust lead and exterior soil dust
lead concentrations are associated with
increases in PbB levels by season. If PbB
levels were associated with interior lead-
based paint, then PbB levels should rise in
the winter when children are more often
confined indoors. Instead, PbB levels are
higher when children have access to exte-
rior sources of lead, i.e., soil and, therefore,
exterior lead dust.

Finally, what about pica children? If
children are categorized into three groups
(those that never mouth fingers or objects,
those that do, and those that eat nonfood
items [pica]), then the key to lead intake is
accessibility to lead sources. The mere pres-
ence of lead will not affect those children
who never engage in mouthing or pica
behavior. For those children who do engage
in mouthing behavior but not pica, the key
variables are the frequency of mouthing
behavior and the size of the lead dust parti-
cle. Rabinowitz and Bellinger (79) have
shown that children who mouth more than
others have 2 to 3 times higher PbB levels.
The U.S. EPA (5) concluded that "dust
sources are important because of children's
hand-to-mouth activities and because a sin-
gle gram of dust can contain 10 times more
lead than the total diet of a child." Finally,
children who have pica for soil or paint run
the risk of ingesting high doses of lead.
Some data suggest that pica children are
about five times more likely to eat soil than
paint chips (80). Lead paint chips easily
contain 5000 to 20,000 pg of lead.
Children with pica for soil may ingest 5 g or
more per day. At a soil concentration of
1000 pg/g (typical of the inner city), a child
could ingest 5000 pg of lead in 1 day. Either
source is more than enough to cause lead
poisoning. As Houk (44) noted, a child
who ingests as litdle as 1/6 g of soil daily can
be lead poisoned [PbB > 30 pg/dl] in a few
months. Indeed, smelter communities have
suffered epidemics of lead poisoning in the
absence of lead paint, with soil and house
dust concentrations comparable to those of
inner-city neighborhoods (40,41).

Biological and Ecological
Causality: Soil Lead
to Blood Lead
The evidence presented above argues that
lead-contaminated soil is a pathway of
human lead that is equally as important as
exposure to lead-based paint. Critics of the
role of lead-contaminated soil may assert
that causality has not been proven. How is
causality determined? Two centuries ago

David Hume stated that causality is a con-
cept not susceptible to empirical demonstra-
tion. Epidemiologists and scientists
contribute to the incremental accretion of
data that one hopes can be assembled into a
coherent picture, and from which lawfulness
can be inferred (81).

If causality is not susceptible to empirical
demonstration, how then do we know
when causality is likely? Hill (82) delin-
eated a series of parameters that are impor-
tant in determining whether causality is
likely in a biological sense. These para-
meters include: consistency of effect; bio-
logical gradients of effect; biological
plausibility of effects; consistency of
biological function; and strength and speci-
ficity of association. To determine causal-
ity, one must first frame the question, as
was done by Rutter (83), on whether
low-level lead exposure exerts adverse
health effects.

In the discussion prior to this section,
the case was made that the overwhelming
contributor to lead in soil was deposition
due to the combustion of leaded gasoline.
Schwartz (49) argued for the causal rela-
tionship between gasoline lead and PbB by
citing the following factors:
* Experimental evidence found in the

investigation of the contribution of
gasoline lead to PbB in isotopic studies
indicated a magnitude similar to that
found in the NHANES II dataset, i.e.,
that "in the late 1970s about 9 pg/dl
of blood lead resulted from lead in
gasoline." (49)

* Cause preceded effect because given
that the half-life of lead in blood is 30
days, the NHANES II dataset revealed
that a 1-month lag between PbB levels
and gasoline air lead concentrations
was most significant on PbB, with cur-
rent or 2-month lag period being less
significant.

* The analysis was repeated in other
localities by other investigators and the
same patterns of gasoline lead emis-
sions were found to be significantly
related to PbB levels; this provides
replicability and consistency.

* Additional analyses revealed a linear
dose-response relationship between
gasoline lead and PbB.

* Given that gasoline lead produced 90%
of U.S. air emissions in the 1970s and
was, therefore, a major source of con-
tamination in the environment, air
inhalation and ingestion of street dust,
house dust, and soil contamination by
hand-to-mouth activity demonstrate

that absorption from the lung and gut
is biologically possible.

* To avoid Type I errors (accepting a
spurious relationship as real) confound-
ing factors were controlled for in vari-
ous analyses; these included age, race,
sex, income, season, degree of urbaniza-
tion, and region of the county.

* Other sources of lead exposure did not
change during the NHANES II exami-
nation period in any significant way;
this externally validates the conclusion.
The following argument extends the

causal argument of Schwartz (49) by exam-
ining the predominant intermediate path-
way between gasoline lead and PbB, i.e.,
lead-contaminated soil. It must be remem-
bered that soil is the sink for lead of all
sources. The essential causal question is this:
Is exposure to lead-contaminated soil that is
accessible to young children a significant
and important contributor to children's
PbB levels?

Consistency ofEffet
Causal inference can be concluded if the
association has been observed in different
investigations using different research
strategies. A review of the literature as a
whole (5,84,85) has consistently shown
that exposure to lead in soil has an effect
on PbB levels.

Biological Gradients of Effect
With regard to the effects of biological
gradients, i.e., dose-response relationships,
most investigations do show a dose-
response relationship within the study, but
scaling difficulties obscure the true
dose-response relationship in many studies
(7,85). A reanalysis by Burgoon et al. (51)
of 11 studies estimated a dose-response
relationship between soil lead and PbB of
6.8 pg/dl per 1000 pg/g.
Biological Plausibility ofEffects
The coherency between exposure and health
effect is a necessary criterion for causality
(86). It is well established that gasoline
emissions resulting in increasing soil lead
concentrations beyond background are
strongly associated with PbB levels (a surro-
gate measure of health effects). There is no
biological difference between soil lead expo-
sure and exposures by different pathways;
once lead is absorbed, after adjusting for rele-
vant bioavailabiity issues, it exerts its effects.

Consistency of Biological Function
Causality occurs if the association makes
biological sense, i.e., that a likely biological
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mechanism exists by which the causal
effect can be mediated. Paint and soil lead
are absorbed through the gut after inges-
tion due to pica or mouthing behavior.
There is no difference in biological effect,
after adjusting for relevant bioavailability
issues, because of the pathway of exposure.

Strgh and Specificity ofAssoation
Are the associations statistically strong and
specific? Lead in soil is strongly associated
with PbB levels (the specific effect) because
it can occur in the absence of lead paint or
other sources (5).

Ecological Causality: Relative
Role of Lead-Based Paint
and Leaded Gasoline
The central issue is whether the most
important lead source is paint (intact or
peeling), or soil and dust. The causality
question then is this: What is the relative
contribution of gasoline-contaminated soil
and lead-based paint exposures to the child
lead problem? To answer the causal ques-
tion noted above, we first rewrite Hill's (82)
delineation of biological parameters of
causality into ecological parameters of
causality. These parameters would include:
consistency of exposure, ecological gradients
of exposure, ecological plausibility of expo-
sure, consistency of ecological function, and
strength and specificity of exposure.

Consisteny ofExposure
Does exposure to lead in soil/dust and/or
paint correlate with population PbB levels?
Exposure to lead-contaminated soil, house
dust lead, or street dust lead has consis-
tently shown a positive correlation between
soil/dust lead concentrations and popula-
tion PbB levels (Table 5). In contrast,
exposure to lead paint is inconsistently
correlated with population PbB levels.

Ecological Gradients ofExposure
Do population PbB level studies show a
geographic gradient of effect and does lead
in any pathway show this same effect? Both
the NHANES II (45) study (a survey of 64
U.S. cities) and the ATSDR (19) study (a
survey of 318 SMSAs) clearly and strongly
showed that PbB levels vary as a function of
distance. The larger the city or the doser to
the center of the city, the greater the num-
ber and percent of children above selected
PbB levels. Does any lead pathway match
the pattern found in these large scale PbB
surveys? Again, Table 5 shows that soil,
house dust, street dust, air, and atmospheric
deposition exhibit a distance gradient in

concentration similar to that found with
lead in children's blood. In contrast, food,
water, and paint pathways exhibit no such
distance relationship. It appears, therefore,
that exposure to lead in dust is an important
predictor of lead in children's blood.

Ecological Plausibility ofExposure
Has the lead-based paint or gasoline been
used in a manner that would explain the
observed PbB level pattern? Environmental
health issues can be analyzed through the
ecological method (87). The ecological
approach has many advantages. a) Because
exposure and health are analyzed on a
group basis, very large populations, orders
of magnitude larger than the typical
prospective cohort design of a few hundred,
can be analyzed in a cost-effective manner.
b) This approach has the practical advan-
tage of using existing databases. c) Studies
can be completed in a relatively short time.
d) Because large databases are used, the
studies can measure relatively small
increases in risk. e) These types of studies
are useful in investigating suspicious clus-
ters of disease in relatively small geographic
locations. When the ecological method is
used in conjunction with other types of
research (case-control investigations, ani-
mal research, prospective epidemiological
studies) and there is consistency of evidence
between the studies of different designs, it
adds to the plausibility of health hazards sug-
gested by the ecological data (88). The
advantages of the ecological method is that it
lends itself to the discussion of the causal
nature of the subject being investigated. An
ecological approach has often been used to
observe that lead paint exposure is often
found in older, deteriorated, or recently ren-
ovated housing. Because of the way cities
grow and renew themselves, this pattern of
lead paint exposure reflects the nature of a
neighborhood, with older deteriorated

neighborhoods providing greater access to
lead paint chips and lead paint dust. When
one moves beyond an individualized
case-control investigation and examines the
PbB level patterns observed in populations
during the NHANES II and ATSDR
studies, one finds that it reflects a pattern of
the city or metropolitan area as a whole
(19,45). That pattern reflects an incidence
rate based upon city size or community
location. Similar to this city or metropolitan
pattern are the patterns of traffic flow and
leaded gasoline usage. Lead concentrations
observed in soil and house dust also match
traffic flow patterns (12). Nearly equal
amounts of lead were used in gasoline and
white-lead paint pigment (Figure 1). Most
gasoline lead was emitted as a dust, yet most
lead paint is still intact as a thin mass on
structures. Hence, gasoline-contaminated
soil/dust provides a coherent explanation for
population PbB level patterns.

Schwartz (49) argued that the citywide
pattern does not point to lead-based paint
as having an effect on PbB levels because
the adult decrease in PbB levels (37%) dur-
ing the NHANES II study was similar to
that for children (42%), and adults do not
eat paint. In addition, ingestion of lead
paint causes large increases in PbB levels. If
there were a drop in lead paint exposure, it
would only affect people whose PbB level
is above the mean. However, the decrease
in PbB during the NHANES II study
shifted the entire distribution dramatically;
even low PbB groups showed major
declines. This would not occur if paint lead
were the major determinant. Furthermore,
the decline in PbB also occurred in subur-
bia, which has a low percentage of pre-
1950 housing and, therefore, less lead
paint, yet both cities and suburbia showed
the same drop in PbB and the same gas
lead coefficient. Finally, only 0.2% of the
housing stock were included in lead paint

Table 5. Summary of the relationship between sources and pathways of lead exposure with blood lead levels and
distance.a

Number of Positive correlation Positive correlation
Source / Pathway study areas with PbB levels with distanceb
Soil 46 42 30 of 30
House dust 45 40 17 of 18
Street dust 16 14 8 of 8
Air 50 28 27 of 27
Air deposition 12 12 9 of 9
Food 13 3 OofO
Water 28 2 0 ofO
Paint 39 14 0 ofO

'Data from Reagan (91). bin this column, the first number represents how many studies were positively associated
with distance, i.e., had a decreasing concentration gradient with distance. The second number indicates how many
studies attempted to correlate the source/pathway with distance.

Environmental Health Perspectives * Vol 106, Supplement 1 * February 1998226



SOIL: AN IMPORTANT PATHWAY OF HUMAN LEAD EXPOSURE

removal programs during this period, so
paint exposure rates were unlikely to
change during this period.

Consistency of Ecological Function
Does the deterioration of paint or the
combustion of gasoline occur in a manner
that best explains observed PbB patterns?
When paint deteriorates, it presents a lead
dust that setdes onto the floor and elsewhere.
House dust floor loadings of more than 200
gg/ft2 have been of concern. Soil dust load-
ings of 100 ppm contain over 139,000
iggft2 in the upper centimeter and soil lead
concentrations often exceed 1000 ppm in
inner-city areas, resulting in loadings ofmore
than 1,000,000 pg/ft2 in the upper centime-
ter. Foundation soil lead can be found at
such concentrations around brick or stone
buildings in the absence of lead paint
(59,89). Many studies show that soil lead
can be tracked into the house and result in
severe contamination (63,65,67,68,90).
Hence, leaded gasoline-contaminated
soil/dust provides a consistent ecological
explanation for observed patterns of human
PbB levels.

Strength and Specfficity ofExposure
Have studies that considered exposure to
lead in soil/dust and paint together, found
that one or more pathways consistently
explain PbB results? Of the 161 studies
summarized in Table 5, 26 considered lead
both in soil and paint. Of these, PbB levels
were positively associated with lead in soil in
22 studies, whereas paint was only positively
correlated in 9 studies. When one pathway
was positive and the other negative, 14 were
positive for soil and not paint, and only 1
was positive for paint and not soil (91).
Generally, then, lead in soil is strongly asso-
ciated with population-based PbB levels.

The discussion above clearly reveals an
association between two variables-soil lead

concentrations and childhood PbB levels-
beyond what could be attributed to chance.
Both biologically and ecologically, this asso-
ciation can be interpreted as causal. In the
words of Needleman and Bellinger (81), we
are well aware that "making causal con-
nections in the real world is not a pure,
value-free enterprise." Nevertheless, it is rea-
sonable to draw the causal condusion above.
In our view there is sufficient evidence to act
on the condusion that soil is equally impor-
tant as a pathway for lead as paint. The main
task remaining for regulatory agencies and
others is to take this conclusion seriously.

Conclusion
The purpose of the above discussion is
2-fold: to evaluate the question of whether
lead-based paint (intact or deteriorating in
place) is a more important pathway for lead
accumulation in young children than lead
in soil from leaded gasoline and lead-based
paint (sanded or sandblasted); and to set
the stage for determining appropriate lead
abatement policy. As philosopher Karl
Popper noted, the way of science does not
consist of any proof of a hypothesis; rather
it consists of a series of failures to disprove
the hypothesis. By this standard, it is clear
that research has failed to disprove the
hypothesis that soil lead exposure in young
children is at least as important as lead
paint exposure. Even if one argues that the
work is incomplete, "that does not confer
upon us a freedom to ignore the knowledge
we already have, or to postpone the action
it appears to demand at a given time" (92).
If HUD or any other regulatory agency
rejects the need to treat soil as an equally
important pathway for lead as equally
important as paint, they may be making a
Type II error (rejecting a valid association
as spurious) in judgment or interpretation,
i.e., in this case, rejecting as spurious the
importance of regulating lead in soil as well

as lead paint. We must not continue to rely
on the false causal model that lead-based
paint is the only significant source of lead
exposure in young children.

Based on the arguments above, lead-
based paint is not a greater risk to young
children than lead in soil. While lead-based
paint is a high-dose source, the biologically
relevant dosage is not much, if any, greater
than lead available in soil. While lead-based
paint is clearly associated with severe lead
poisoning, so too is lead in soil. Lead in
gasoline and lead in food, but not lead in
paint, are strongly associated with popula-
tion PbB levels in both young children and
adults. Further, lead in soil and house dust,
but not lead-based paint, is associated with
population PbB levels in young children.
The overwhelming majority of lead in soil
and house dust is associated with lead from
gasoline. Lead-based paint dust is associated
with cases of renovation of either exterior or
interior environments where the paint was
pulverized into a lead dust, or where lead-
contaminated bare soil is low. Abatement of
lead-contaminated soil may be more
effective than abatement of lead paint in
reducing PbB levels of young children,
based upon the limited data available.
Approximately equal numbers of children
under 7 years of age are exposed to lead in
soil dust and intact or deteriorating lead-
based paint. Seasonality studies strongly
point to lead in soil as a significant source
of population PbB levels. Studies of pica
children suggest that lead in soil is a greater
risk factor than lead in paint. In summary,
lead in soil may well be the primary
causative agent for concern in addressing
the population of children at risk of lead
poisoning. If so, what does this mean for
public policy? It means that equal regula-
tory attention must be given to lead-conta-
minated soil as to lead-based paint to solve
the child lead problem.
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